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Notes on the structure of viscous and
numerically-captured shocks

SUMMARY

An exact expression for the flow variables through a viscous
shock wave is obtained from the Navier-Stokes equations. The
Prandtl number is taken to be 3/4, which is close to the value for
air, and the viscosity is assumed to be given by Sutherland’s
formula.

By considering the limit as the viscosity tends to zero, it is
shown that the solution to the Euler equations has an entropy
spike at the shock wave. This explains certain, hitherto
considered spurious, features of shock waves captured by
numerical solutions of the Euler equations.

J. PIKE*

However, the maximum value of the entropy at the shock
wave remains finite. Thus the solution of the Euler equations,
when considered as a limiting case of the Navier-Stokes
equations, has an entropy spike at the shock wave. This
provides some justification for the ‘spurious’ entropy spikes
which occur in some numerical solutions of the Euler equations.

2. NOTATION

1. INTRODUCTION

Analytic solutions of the Navier-Stokes equations are of
interest, both for the insight they can give into the nature of the
solution flow and as possible test examples to validate
computer programs designed to compute more general flows.
One of the few analytic solutions available for the viscous
compressible Navier-Stokes equations is the steady flow
through a plane shock wave, which has been derived using a
simplified form of the viscosity-temperature relationship®-?. A
more accurate analytic solution, using Sutherland’s formula for
the viscosity, is presented here. Although the new solution
produces results largely similar to those obtained previously, it
is nevertheless important because it removes the uncertainty
introduced by using less accurate viscosity temperature
relationships.

There has been much discussion®? on the validity of these
solutions when applied to strong shock waves in air, because
the shocks may be so thin that air ceases to behave as a
continuous medium in equilibrium. It would appear both from
limitations imposed by the assumption of thermal equili-
brium®, as well as direct comparison of the solutions of the
Navier-Stokes equations with solutions of the Boltzmann
equation®”), that the Navier-Stokes profiles are valid up to a
maximum normal Mach number of about 1.5. Within this
Mach number restriction however, because most shock waves
are very nearly plane on a scale related to shock wave thick-
ness, the profiles have wide application to shock waves in air.

Most variables vary smoothly and monotonically through the
shock wave from their upstream to their downsteam value. The
entropy, however, has a maximum within the shock wave®, In
Section 5 an expression for the height of this maximum is
derived, which does not depend on the viscosity-temperature
relationship. As the viscosity tends to zero, the Navier-Stokes
equations reduce to the Euler equations and the shock wave
becomes a discontinuity without internal structure.

A, — A, constants defined after equation (12)
b constant in Sutherland’s formula (equation (5))
c constant defined in equation (8)

Cp, €y specific heat at constant pressure and volume

d constant defined in equation (9)

I, — I, functionsofu,y,M, and b defined in equations (13-16)

k, — k, constants defined after equation (12)

M, Mach number far upstream and normal to the shock
wave

p pressure

R gas constant (¢, — c,)

T absolute temperature

u velocity normal to the shock wave (later non-
dimensionalised by u,)

x co-ordinate in direction normal to shock wave

Xg reference length u,/pu

¥ ratio of specific heats

M coefficient of viscosity

P density

Subscripts

1 far upstream

2 far downstream

x differentiation in direction normal to shock wave

3. ' REDUCED NAVIER-STOKES EQUATIONS

*The research reported in this paper was carried out while the author
was at RAE, Bedford.
Paper No 1311.

The flow is assumed to be steady with constant conditions far
upstream and far downstream, where the pressure, density,
temperature and velocity components in the x and y directions
are given by py, p, Ty, 4y, vy and p,, p2, T5, u, and v, respec-
tively. The specific heats at constant pressure, ¢,, and volume,
¢,, are assumed to be constant and the equation of state is to be
taken to be that of a perfect gas.

ie
P =pRT 6))
where R is the gas constant, ¢, — c,.

We seek solutions to the reduced Navier-Stokes equations,
when there is no change in the flow variables in the y-direction
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and the transverse velocity v is constant everywhere. With
these assumptions and a value of Prandtl number of 3/4, which
is close to the value for air, the mass, energy and momentum
equations reduce to"®

puU = i N )

W +2c,T=(y+ Duwu/ly—1) R )
8y

puu(uy —u) (u—w) = _T(yTl) MU, N )

where w is the coefficient of viscosity, vy is the ratio of specific
heats. ¢,/c,. and u, is du/dx.

The only term remaining to be defined is the coefficient of
viscosity in equation (4), and this is most adequately described
by Sutherland’s formula®®,

wa T2(T +T))

where T, is often taken to be 114K. For our purposes we use the
form of the formula suggested by Pia®, that is

£ _ (TP (1 +b) )
My (T/T) + b

where b is a constant inversely proportional to T} and the suffix
1 denotes a reference condition, here taken to be on the up-
stream side of the shock. Because of the complication of
Sutherland’s formula a more algebraically convenient form of
w1 is sometimes used, namely

M = constant 7% A ()]

where o is a constant whose value for air is usually taken to
be5® between 3/4 and 1. The available solutions of Becker(!)
Thomas'® and Howarth® use equation (6) with @ = 0 and 1/2
respectively. While noting that a further analytical solution
using equation (6) with @ = 1 could be obtained, we proceed
instead to derive the more accurate analytical profiles using
Sutherland’s formula. Tt is shown later that the errors for the

= 1 solution must be expected to be similar in magnitude to
those for @ = 1/2.

4. ANALYTIC SOLUTION

Substitution for the temperature in Sutherland’s formula from
equation (3) gives

g (1 +b)(E — )"
w @ - DEE - D) O

where u is non-dimensionalised with respect to u;, and the
constants ¢ and d are expressed in terms of the upstream Mach
number normal to the shock wave (M;) by

_yrbw 2

"oy Um0 @
and
d2=c2+(c2—1)b:1+(3(—141_)bv)12>02 )

Substituting for p in equation (4) from equation (7) we can
write u, as a function of u

ie

pu, _ =30+ D(EE -1 A - ) (u—w) (@~ u?)

P1 8y (1 + byu(c —u)*
(10
This equation can be integrated to give
=3y + (- D" (2 —u?) 2 udu
8y (1+b)xg AW w)[d - w)
(11)

where xp is the reference length w,/pu,. It can be observed that
x/xg has the form of a Reynolds number in the upstreamn flow
normal to the shock wave.

By using the substitution u = ¢ sin@, the RHS can be written

cos*0ds
r= fk+sm0 - 4

where A, to A, have values 2(d — 1) (d — u,), 2(d + 1) (d + w),
—(d? = 1) (1 — w,) and (d? — u,) (1 — w;)/u, respectively, and k;
has values —d/c, dfc, —1/c and —uw,/c. The four integrals which
are summed in equation (12) have been evaluated to give

_ A+ (@ —uH2+du
I, = 2(d? — C2)3/2 tafl 1{(6 F - — 02)1/2}

(13)

o 100
x/xg

Figure 1. Shock wave profiles for various upstream Mach
numbers withy = 1:4and b = 0-522.
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— 12312
b=nm—&wmr{ ¢ F (i) + du }+%

c+ (@A) @ -

(14)
_ _ f ErcE—u)?r—u
b= =2 = )P coth 1:(:: +H(E— )P (E -~ 1)”2} s
(15)
_ _f S+ —ud)—uu
Iy = = 2(c® — w?)’* tanh ‘{(c+ E— )P (C— 1422)‘/2}+ 94
(16)
where g; is given by
q; = c3k; (% - k,-z) sin” ! (ufc) + é(& ~ ytyi2
(8¢ — 6¢2k? + 3ck; u — 2u?) N ¢ )

With [ to I, given by equations (13) to (16), x/x, is expressed as
an analytic function of u, M;, v and b by

8y(1 + b) {11+_12+ L 14}

X
Z = - ) -1 B34 4
XR 3(y+ 1) (- D2 A A A3 A

(18)

The other flow variables can be expressed in terms of u using
equations (1) to (3).

Shock wave profiles from equation (18) with y = 1-4 are
shown in Fig. 1 plotted against x/x5. The value of b used is that
suggested by Pia® namely b = 0-522 when 7; = 222K. The
origin of the x/xy axis is chosen for clarity to be upstream of the
shock wave. The x position for critical conditions, where u =

(u,u,)12, is shown on each profile. The most striking feature of -

the profiles is the rapid decrease in shock wave width with
increasing Mach number. In Fig. 2, profiles for M = 1-5 with b
= (-522 (continuous curve) and b = 0 (dotted curve) are
shown. We see that as b increases from 0 to 0-522 the shock
wave width increases by about 5%. When b = 0 Sutherland’s
formula reduces to the form of expression used for p by
Thomas?,

More generally, the error in the shock wave width incurred
by using equation (6) can be estimated from the error in u,
within the shock wave. At critical conditions within the shock
wave when u = (uu,)!”? we have from equations (3) and (8)

Teric — 1+(y - 1)M12

Tl Y + 1
and from equation (4) for any value of 4

u, (approximate) _  u (Sutherland)
u, (Sutherland)  u (from equation (6))

xpyUy Tuy

Figure 2. Shock wave profiles from Sutherland’s formula with
b = 0and 0-522.

Then using the same values for 7| and b as above, the shock
width error must be expected to increase nearly linearly with
Mach number, from zero at sonic conditions to —12%, —6%
and 5% when w = 0, 1/2 and 1 respectively at M, = 15,

5. ENTROPY SPIKES AND SHOCK CAPTURING ALGORITHMS

As u — 0, equations (2)-(4) reduce to the one-dimensional
Euler equations and the shock wave width tends to zero. At the
shock wave the variables have values which jump discon-
tinuously from the upstream conditions (1) to the downstream
conditions (2). This discontinuous change in the flow variables
causes problems for numerical computation of the flow using
shock capturing algorithms, in that spurious oscillations tend to
be produced in the numerical solution near the discontinuity.
To control this oscillatory behaviour, terms similar to the uuu,
term in equation (4) have long been added to the equations®
to introduce a large numerical viscosity near the shock wave.
The internal structure of these numerical shock waves depends
on the type of term added.

It has been assumed in the past that successful shock wave
representation should produce monotonic changes from
upstream to downstream conditions by means of a few inter-
mediate values''”. However, some algorithms cause peak
values to occur at the shock wave!), particularly in variables
such as the entropy, and these ‘spurious’ features have been
regarded as resulting from the oscillatory tendency of the
algorithm near the shock wave. In Fig. 3 we show the analytic
distribution of p/p? through the shock wave as a function of
x/xp. We see that this variable has a maximum within the shock
wave and that in the limit as u > 0, the distribution becomes a
spike. The entropy is directly expressible in terms of this
variable

(T/T1)3/2-w(1 - b) 5 p/p’Y
= S$—8 =¢cl L. (1Y
(T +b Loem lpl/pyl (1)
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and hence the entropy will also peak at the shock wave® and
have a spike as its limit. From equations (1)-(3) this maximum
value is found as a function of M, and y to be

-1, 2\
(y + M }

at a velocity of (#u,)'2. The values of (S,,, — S;) as a ratio to
the rise in the entropy through the shock wave (S, — ), are
plotted in Fig. 4 for v = 1-4. At M = 15, we see that the
entropy peaks at a value of over twice the rise through the
shock wave. At smaller Mach numbers the relative rise is
greater, but the entropy rise across the shock wave is much
smaller, as is indicated by the plots in Fig. 3.

As the maximum entropy given by equation (20) is derived
without using equation (4), it is independent of the viscosity.
Thus the approximate solutions based on the viscosity
assumptions of equation (6) with w = 0, 1/2 and 1, will exhibit
the correct entropy maximum within the shock wave. As u— 0
for any of the solutions, the entropy distribution will become a
spike at the shock wave.

For the case of zero viscosity, equations (2)-(4) can be
identified as the Fuler equations of mass, energy and
momentum respectively. Thus, any scheme for obtaining
steady solutions of the Euler equations which conserves mass
and energy and obeys the equation of state, will be correct in
exhibiting an entropy maximum at the shock wave as pre-
scribed by equation (20).

Y
Smax = Sl + Cvln {Mlz(y +1

(20)

CONCLUSIONS

An exact solution for the flow through a viscous shock wave is
found by solving the Navier-Stokes equations with a Prandl
number of 3/4 and Sutherland’s Law for the viscosity-tempera-
ture relationship. The values of the flow variables through the
shock wave are found to differ by only a small amount from
values found previously using less accurate viscosity-tempera-
ture relationships. The main difference is an increase in the
width of the shock wave by about 5%.

1.08 -

(pipy)
teip M

xpyUy fuy

Figure 3. Variation of p/p» through the shock wave,
with b = 0:522,
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Figure 4. Ratio of entropy peak to entropy rise through the
shock wave.

This solution, like previous solutions, shows that the entropy
has a local maximum within the shock wave. The height of this
maximum is found as a function of the normal Mach number
upstream of the shock wave, and it is independent of the
viscosity. Thus, if we regard the Euler equations as a reduced
form of the Navier-Stokes equations as the viscosity tends to
zero, the solution to the Euler equations has an entropy spike
at the shock wave. More particularly, solutions of the steady
Euler equations which conserve mass and energy and obey the
equation of state have as their solution an entropy spike of zero
thickness at the shock wave, whose height is related to the
normal upstream Mach number. The occurrence of this
entropy spike provides an explanation for the ‘spurious’
entropy spikes which occur in some numerical solutions of the
Euler equations.
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